python绘图-文本读取
写在最前面-pandas
python加载数据用于绘图,方法比较多,但建议采用pandas读取excel
和csv
数据并进行处理和绘图。
Getting started tutorials — pandas 1.2.4 documentation (pydata.org)
read_*
和to_*
- csv
- excel
- sql
- json
- parquet
- ...
pd.dtypes
pd.info()
pd.head()
pd.tail()
- Import the package, aka
import pandas as pd
- A table of data is stored as a pandas
DataFrame
- Each column in a
DataFrame
is aSeries
- You can do things by applying a method to a
DataFrame
orSeries
- Getting data in to pandas from many different file formats or data sources is supported by read_* functions.
- Exporting data out of pandas is provided by different to_*methods.
- The head/tail/info methods and the dtypes attribute are convenient for a first check.
- When selecting subsets of data, square brackets [] are used.
- Inside these brackets, you can use a single column/row label, a list of column/row labels, a slice of labels, a conditional expression or a colon.
- Select specific rows and/or columns using loc when using the row and column names
- Select specific rows and/or columns using iloc when using the positions in the table
- You can assign new values to a selection based on loc/iloc.
- The
.plot.*
methods are applicable on both Series and DataFrames- By default, each of the columns is plotted as a different element (line, boxplot,…)
- Any plot created by pandas is a Matplotlib object.
- Create a new column by assigning the output to the DataFrame with a new column name in between the
[]
.- Operations are element-wise, no need to loop over rows.
- Use
rename
with a dictionary or function to rename row labels or column names.- Aggregation statistics can be calculated on entire columns or rows
groupby
provides the power of the split-apply-combine patternvalue_counts
is a convenient shortcut to count the number of entries in each category of a variable- Sorting by one or more columns is supported by
sort_values
- The
pivot
function is purely restructuring of the data,pivot_table
supports aggregations- The reverse of
pivot
(long to wide format) ismelt
(wide to long format)- Multiple tables can be concatenated both column-wise and row-wise using the
concat
function.- For database-like merging/joining of tables, use the
merge
function.- Valid date strings can be converted to datetime objects using
to_datetime
function or as part of read functions.- Datetime objects in pandas support calculations, logical operations and convenient date-related properties using the
dt
accessor.- A
DatetimeIndex
contains these date-related properties and supports convenient slicing.Resample
is a powerful method to change the frequency of a time series.- String methods are available using the
str
accessor.- String methods work element-wise and can be used for conditional indexing.
- The
replace
method is a convenient method to convert values according to a given dictionary.
下面是网络上查到的一些数据加载方法
excel文本读取
1 | import numpy as np |
pandas读取excel数据
1 | #https://blog.csdn.net/weixin_38546295/article/details/83537558 |
txt文本读取
单列数据读取
1 | import numpy as np |
多列数据读取
逗号分割情况
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
————————————————
版权声明:本文为CSDN博主「dazuo01」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/dazuo01/article/details/20841909
1 | ## 从.txt文件中读取数据 |
datat.txt
1 | 0 93 |
- 切片方法:
1 | x = a[:,0] # 取第一列数据 |
另外一种使用 pandas 切片的方法:
方法1:使用 np.loadtxt( ) 方法读取数据
1 | # code:utf-8 Ubuntu |
方法2:使用 Pandas 读取数据
1 | # code:utf-8 Windows 7 Utilmate |
csv数据读取
1 | import pandas as pd |
参考文献:
https://blog.csdn.net/qq_41365597/article/details/90676249
https://blog.csdn.net/dazuo01/article/details/20841909
https://blog.csdn.net/weixin_38546295/article/details/83537558
https://www.jianshu.com/p/7ac36fafebea