1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
   |  import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap
 
 
  class Perceptron(object):     """Perceptron classifier.
      Parameters     ------------     eta : float       Learning rate (between 0.0 and 1.0)     n_iter : int       Passes over the training dataset.     random_state : int       Random number generator seed for random weight       initialization.
      Attributes     -----------     w_ : 1d-array       Weights after fitting.     errors_ : list       Number of misclassifications (updates) in each epoch.
      """     def __init__(self, eta=0.01, n_iter=50, random_state=1):         self.eta = eta         self.n_iter = n_iter         self.random_state = random_state
      def fit(self, X, y):         """Fit training data.
          Parameters         ----------         X : {array-like}, shape = [n_samples, n_features]           Training vectors, where n_samples is the number of samples and           n_features is the number of features.         y : array-like, shape = [n_samples]           Target values.
          Returns         -------         self : object
          """         rgen = np.random.RandomState(self.random_state)         self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])         self.errors_ = []
          for _ in range(self.n_iter):             errors = 0             for xi, target in zip(X, y):                 update = self.eta * (target - self.predict(xi))                 self.w_[1:] += update * xi                 self.w_[0] += update                 errors += int(update != 0.0)             self.errors_.append(errors)         return self
      def net_input(self, X):         """Calculate net input"""         return np.dot(X, self.w_[1:]) + self.w_[0]
      def predict(self, X):         """Return class label after unit step"""         return np.where(self.net_input(X) >= 0.0, 1, -1)
 
 
 
 
 
 
 
 
 
  df = pd.read_csv('https://archive.ics.uci.edu/ml/'         'machine-learning-databases/iris/iris.data', header=None) df.tail()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  df = pd.read_csv('iris.data', header=None) df.tail()
 
 
 
 
 
  y = df.iloc[0:100, 4].values y = np.where(y == 'Iris-setosa', -1, 1)
 
  X = df.iloc[0:100, [0, 2]].values
 
  plt.scatter(X[:50, 0], X[:50, 1],             color='red', marker='o', label='setosa') plt.scatter(X[50:100, 0], X[50:100, 1],             color='blue', marker='x', label='versicolor')
  plt.xlabel('sepal length [cm]') plt.ylabel('petal length [cm]') plt.legend(loc='upper left')
 
  plt.show()
 
 
 
  ppn = Perceptron(eta=0.1, n_iter=10) ppn.fit(X, y) plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o') plt.xlabel('Epochs') plt.ylabel('Number of updates')
 
  plt.show()
 
  def plot_decision_regions(X, y, classifier, resolution=0.02):
           markers = ('s', 'x', 'o', '^', 'v')     colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')     cmap = ListedColormap(colors[:len(np.unique(y))])
           x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1     x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1     xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),                            np.arange(x2_min, x2_max, resolution))     Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)     Z = Z.reshape(xx1.shape)     plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)     plt.xlim(xx1.min(), xx1.max())     plt.ylim(xx2.min(), xx2.max())
           for idx, cl in enumerate(np.unique(y)):         plt.scatter(x=X[y == cl, 0],                      y=X[y == cl, 1],                     alpha=0.8,                      c=colors[idx],                     marker=markers[idx],                      label=cl,                      edgecolor='black')
 
 
 
  plot_decision_regions(X, y, classifier=ppn) plt.xlabel('sepal length [cm]') plt.ylabel('petal length [cm]') plt.legend(loc='upper left')
 
 
  plt.show()
 
 
 
 
 
 
 
  class AdalineGD(object):     """ADAptive LInear NEuron classifier.
      Parameters     ------------     eta : float       Learning rate (between 0.0 and 1.0)     n_iter : int       Passes over the training dataset.     random_state : int       Random number generator seed for random weight       initialization.
 
      Attributes     -----------     w_ : 1d-array       Weights after fitting.     cost_ : list       Sum-of-squares cost function value in each epoch.
      """     def __init__(self, eta=0.01, n_iter=50, random_state=1):         self.eta = eta         self.n_iter = n_iter         self.random_state = random_state
      def fit(self, X, y):         """ Fit training data.
          Parameters         ----------         X : {array-like}, shape = [n_samples, n_features]           Training vectors, where n_samples is the number of samples and           n_features is the number of features.         y : array-like, shape = [n_samples]           Target values.
          Returns         -------         self : object
          """         rgen = np.random.RandomState(self.random_state)         self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])         self.cost_ = []
          for i in range(self.n_iter):             net_input = self.net_input(X)                                                                                                        output = self.activation(net_input)             errors = (y - output)             self.w_[1:] += self.eta * X.T.dot(errors)             self.w_[0] += self.eta * errors.sum()             cost = (errors**2).sum() / 2.0             self.cost_.append(cost)         return self
      def net_input(self, X):         """Calculate net input"""         return np.dot(X, self.w_[1:]) + self.w_[0]
      def activation(self, X):         """Compute linear activation"""         return X
      def predict(self, X):         """Return class label after unit step"""         return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)
 
 
 
  fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
  ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y) ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o') ax[0].set_xlabel('Epochs') ax[0].set_ylabel('log(Sum-squared-error)') ax[0].set_title('Adaline - Learning rate 0.01')
  ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y) ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o') ax[1].set_xlabel('Epochs') ax[1].set_ylabel('Sum-squared-error') ax[1].set_title('Adaline - Learning rate 0.0001')
 
  plt.show()
 
 
 
 
  X_std = np.copy(X) X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std() X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()
  ada = AdalineGD(n_iter=15, eta=0.01) ada.fit(X_std, y)
  plot_decision_regions(X_std, y, classifier=ada) plt.title('Adaline - Gradient Descent') plt.xlabel('sepal length [standardized]') plt.ylabel('petal length [standardized]') plt.legend(loc='upper left') plt.tight_layout()
  plt.show()
  plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o') plt.xlabel('Epochs') plt.ylabel('Sum-squared-error')
  plt.tight_layout()
  plt.show()
 
 
 
 
  class AdalineSGD(object):     """ADAptive LInear NEuron classifier.
      Parameters     ------------     eta : float       Learning rate (between 0.0 and 1.0)     n_iter : int       Passes over the training dataset.     shuffle : bool (default: True)       Shuffles training data every epoch if True to prevent cycles.     random_state : int       Random number generator seed for random weight       initialization.
 
      Attributes     -----------     w_ : 1d-array       Weights after fitting.     cost_ : list       Sum-of-squares cost function value averaged over all       training samples in each epoch.
               """     def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):         self.eta = eta         self.n_iter = n_iter         self.w_initialized = False         self.shuffle = shuffle         self.random_state = random_state              def fit(self, X, y):         """ Fit training data.
          Parameters         ----------         X : {array-like}, shape = [n_samples, n_features]           Training vectors, where n_samples is the number of samples and           n_features is the number of features.         y : array-like, shape = [n_samples]           Target values.
          Returns         -------         self : object
          """         self._initialize_weights(X.shape[1])         self.cost_ = []         for i in range(self.n_iter):             if self.shuffle:                 X, y = self._shuffle(X, y)             cost = []             for xi, target in zip(X, y):                 cost.append(self._update_weights(xi, target))             avg_cost = sum(cost) / len(y)             self.cost_.append(avg_cost)         return self
      def partial_fit(self, X, y):         """Fit training data without reinitializing the weights"""         if not self.w_initialized:             self._initialize_weights(X.shape[1])         if y.ravel().shape[0] > 1:             for xi, target in zip(X, y):                 self._update_weights(xi, target)         else:             self._update_weights(X, y)         return self
      def _shuffle(self, X, y):         """Shuffle training data"""         r = self.rgen.permutation(len(y))         return X[r], y[r]          def _initialize_weights(self, m):         """Initialize weights to small random numbers"""         self.rgen = np.random.RandomState(self.random_state)         self.w_ = self.rgen.normal(loc=0.0, scale=0.01, size=1 + m)         self.w_initialized = True              def _update_weights(self, xi, target):         """Apply Adaline learning rule to update the weights"""         output = self.activation(self.net_input(xi))         error = (target - output)         self.w_[1:] += self.eta * xi.dot(error)         self.w_[0] += self.eta * error         cost = 0.5 * error**2         return cost          def net_input(self, X):         """Calculate net input"""         return np.dot(X, self.w_[1:]) + self.w_[0]
      def activation(self, X):         """Compute linear activation"""         return X
      def predict(self, X):         """Return class label after unit step"""         return np.where(self.activation(self.net_input(X)) >= 0.0, 1, -1)
 
 
 
  ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1) ada.fit(X_std, y)
  plot_decision_regions(X_std, y, classifier=ada) plt.title('Adaline - Stochastic Gradient Descent') plt.xlabel('sepal length [standardized]') plt.ylabel('petal length [standardized]') plt.legend(loc='upper left')
  plt.tight_layout()
  plt.show()
  plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o') plt.xlabel('Epochs') plt.ylabel('Average Cost')
  plt.tight_layout()
  plt.show()
  ada.partial_fit(X_std[0, :], y[0])
 
 
 
 
 
 
 
 
 
 
  |